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Abstract. Compressed representations have become effective to store and access large
Web and social graphs, in order to support various graph querying and mining tasks.
The existing representations exploit various typical patterns in those networks and pro-
vide basic navigation support. In this paper we obtain unprecedented results by finding
“dense subgraph” patterns and combining them with techniques such as node orderings
and compact data structures. On those representations we support out-neighbor and
out/in-neighbor queries, as well as mining queries based on dense subgraphs.

First, we propose a compression scheme for Web graphs that reduces edges by
representing dense subgraphs with “virtual nodes”; over this scheme we apply node
orderings and other compression techniques. With this approach we match the best
current compression ratios that support out-neighbor queries (i.e., nodes pointed from
a given node), using 1.0–1.8 bits per edge (bpe) on large Web graphs, and retrieving
each neighbor of a node in 0.6–1.0 microseconds (µsec). When supporting both out-
and in-neighbor queries, instead, our technique generally offers the best time when
using little space. If the reduced graph, instead, is represented with a compact data
structure that supports bidirectional navigation, we obtain the most compact Web
graph representations (0.9–1.5 bpe) that support out/in-neighbor navigation, yet the
time per neighbor extracted raises to around 5–20 µsec. We also propose a compact
data structure that represents dense subgraphs without using virtual nodes. It allows
us to recover out/in-neighbors and answer other more complex queries on the dense
subgraphs identified. This structure is not competitive on Web graphs, but on social
networks it achieves 4–13 bpe and 8–12 µsec per out/in-neighbor retrieved, which im-
proves upon all existing representations.
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1. Introduction

Web graphs represent the link structure of the Web. They are usually modeled
as directed graphs where nodes represent pages and edges represent links among
pages. On the other hand, social networks represent relationships among social
entities. These networks are modeled by undirected or directed graphs depending
on the relation they model. For instance, the friendship relation in Facebook is
symmetric and then it is modeled by an undirected graph, whereas the “follow-
ing” relation on Twitter and LiveJournal is not symmetric and therefore it is
modeled by a directed graph.

The link structure of Web graphs is often used by ranking algorithms such
as PageRank (Brin and Page, 1998) and HITS (Kleinberg J., 1999), as well as
for spam detection (Becchetti et al., 2008; Saito et al., 2007), for detecting com-
munities (Kumar et al., 1999; Dourisboure et al., 2007), and for understanding
the structure and evolution of the network (Donato et al., 2005; Dourisboure et
al., 2007). A social network structure is often used for mining and analysis pur-
poses, such as identifying interest groups or communities, detecting important
actors (Saito et al., 2012), and understanding information propagation (Mislove
et al., 2007; Katarzyna et al., 2009; Cha et al., 2009). Those algorithms use
a graph representation that supports at least forward navigation (i.e., to the
out-neighbors of a node, or those pointed from it), and many require backward
navigation as well (i.e., to the in-neighbors of a node, or those that point to it).

Managing and processing these graphs are challenging tasks because Web
graphs and social networks are growing in size very fast. For instance, a recent
estimation of the indexable Web size states that it is over 7.8 billion pages (and
thus, around 200 billion edges),2 and Facebook has over 950 million active users
worldwide.3 Google has recently augmented the user search experience by intro-
ducing the knowledge graph,4 which models the relationship of about half-million
entities over 3.5 billion relationships among entities. This knowledge graph is used
in addition to the Web graph to improve the search efficacy.

Different approaches have been used to manage large graphs. For instance,
streaming and semi-streaming techniques can be applied with the goal of pro-
cessing the graph sequentially, ideally in one pass, although a few passes are
allowed. The idea is to use main memory efficiently, avoiding random access to
disk (Demetrescu et al., 2006). External memory algorithms define memory lay-
outs that are suitable for graph algorithms, where the goal is to exploit locality
in order to reduce I/O costs, reducing random accesses to disk (Vitter, 2001).
Another approach is the use of distributed systems, where distributed memory
is aggregated to process the graph (Suri and Vassilvitskii, 2011). However, de-
pending on the problem, the synchronization and communication required may
impose I/O costs similar to those of the external memory approach.

Compressed data structures aim to reduce the amount of memory use by
representing graphs in compressed form while being able to answer the queries
of interest without decompression. Even though these compressed structures are
usually slower than uncompressed representations, they are still much faster than
incurring I/O costs: They can be orders of magnitude faster when they can fit
completely in main memory graphs that would otherwise require disk storage.

2 www.worldwidewebsize.com, on August 6, 2012
3 http://newsroom.fb.com/content/default.aspx?NewsAreaId=22 considering June 2012.
4 http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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When considering a distributed scenario, they allow the graphs to be deployed on
fewer machines, yielding important savings in communication costs and energy.

Several proposals use compressed data structures for Web graphs, mainly
enabling out-neighbor queries (Boldi and Vigna, 2004; Apostolico and Drovandi,
2009; Claude and Navarro, 2010; Grabowski and Bieniecki, 2011), yet some also
support bidirectional navigation (i.e., handle out/in-neighbor queries) (Brisaboa
et al., 2009; Claude and Navarro, 2010b). Some more recent ones address social
networks (Chierichetti et al., 2009; Maserrat and Pei, 2010; Boldi et al., 2011;
Claude and Ladra, 2011).

In this paper we introduce new approaches to develop competitive compressed
data structures for managing and processing large Web and social graphs. The
main contributions of this work follow.

– We enhance an existing technique to detect bicliques (Buehrer and Chellapilla,
2008) so that it detects more general “dense subgraphs”. These include cliques,
bicliques, and in general not necessarily disjoint pairs of node sets where all in
the first set point to all in the second set5. We study the effectiveness of the
technique and demonstrate that it captures a fair amount of the structure of
Web graphs (more than 90%) and social networks (around 60%), improving
upon the detection of bicliques (where the sets must be disjoint). We show
how to process large graphs in secondary memory. This new graph mining
technique is key to the success of the compressed representations we develop.

– We apply their “virtual node mining” technique (Buehrer and Chellapilla,
2008) on the discovered dense subgraphs, which replaces the edges of the dense
subgraph by a virtual node with fewer links. We then list the nodes in the BFS
order of Apostolico and Drovandi (2009) and use their encoding. The result
is a Web graph representation with out-neighbor query support that is either
very close to or better than, in space and time, the best current representation
(Grabowski and Bieniecki, 2011): On large Web graphs it uses 1.0–1.8 bits
per edge (bpe) and retrieves each neighbor in 0.6–1.0 microsecond (µsec). We
show, however, that our technique is more robust as it performs equally well
on the transposed Web graph, whereas the one by Grabowski and Bieniecki
(2011) performs significantly worse.

– By maintaining the BFS ordering after virtual node mining, but now using
a bidirectional representation (k2-tree) on the resulting graph (Brisaboa et
al., 2009), we obtain the smallest existing representation with out/in-neighbor
support: 0.9–1.5 bpe, much smaller than in the previous item. The price is
that the query time is higher: 5–20 µsec per extracted neighbor.

– We design a novel compressed data structure to represent the dense subgraphs,
that does not use virtual nodes. This representation supports not only out/in-
neighbor navigation, but also various graph mining queries based on the dense
subgraphs discovered, such as listing cliques and bicliques, retrieving density
and size of the subgraphs, finding node participation in different subgraph
patterns, and so on. While this technique is not competitive with the pre-
vious one on Web graphs (yet it supports other queries), it excels in social
networks, where it achieves the best spaces so far with support for out/in-
neighbor queries: 4–13 bpe and 8–12 µsec per retrieved neighbor.

5 The term “dense subgraph” appears in the literature with different meanings (Lee et al.,
2010), but in this paper we use it to mean the described generalization of cliques and bicliques.
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Conference versions of this work appeared in SNA-KDD workshop (Hernández
and Navarro, 2011) and in SPIRE (Hernández and Navarro, 2012). This article
extends that work with a thorough analysis of the quality of the dense subgraph
finding algorithm, a secondary memory variant of the algorithm, its application
to the transposed Web graphs, improved combinations of the scheme with BFS
orderings, and the study of other graph mining queries.

In all the experiments we describe in this paper we used a Linux PC with 16
processors Intel Xeon at 2.4GHz, with 72 GB of RAM and 12 MB of cache. We
used g++ compiler with full optimization.

2. Related Work

We divide this section in two parts. First, we survey compression techniques for
Web and social graphs, and the supported queries. Second, we discuss compact
data structures based on bitmaps and symbol sequences that provide guaran-
tees in terms of space and access times. Such structures are the basis for the
compressed data structure we present in Section 5.

2.1. Compressed representations for Web and social graphs

Compressing Web graphs has been an active research area for some time. Suel
and Yuan (2001) built a tool for Web graph compression distinguishing global
links (pages on different hosts) from local ones (pages on the same host) and
combining different coding techniques, such as Huffman and Golomb codes. Adler
and Mitzenmacher (2001) achieved compression by using similarity. The idea
was to code an adjacency list by referring to an already coded adjacency list of
another node that points to many of the same pages. They used this idea with
Huffman coding to achieve compression of global links. Randall et al. (2002)
proposed lexicographic ordering of URLs as a way to exploit locality (i.e., that
pages tend to have hyperlinks to other pages on the same domain) and similarity
of (nearby) adjacency lists for compressing Web graphs.

Later, Boldi and Vigna (2004) proposed the WebGraph framework. This ap-
proach also exploits power-law distributions, similarity and locality using URL
node ordering. Essentially, given a node ordering that enhances locality and sim-
ilarity of nearby lists, WebGraph uses an encoding based on gaps and pointers
to near-copies that takes advantage of those properties. The main parameters of
this compression technique are w and m, where w is the window size and m is
the maximum reference count. The window size means that the list li can only be
expressed as a near-copy of li−w to li−1, whereas the reference count of list li is
r(li) = 0 if it is not expressed as a near-copy of another list, or r(li) = r(lj)+1 if
li is encoded as a near-copy of list lj . Increasing w and m improves compression
ratio, but also increases access time.

In a later work, Boldi et al. (2009) explored existing and novel node ordering
methods, such as URL, lexicographic, Gray ordering, etc. More recently, Boldi
et al. (2011) designed node orderings based on clustering methods, and achieved
improvements on compressing Web graphs and social networks with a clustering
algorithm called Layered Label Propagation (LLP). A different and very com-
petitive node ordering was proposed by Apostolico and Drovandi (2009). Their
approach orders the nodes based on a Breadth First traversal (BFS) of the graph,
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and then they used their own encoding that takes advantage of BFS. They en-
code the out-degrees of the nodes in the order given by the BFS traversal, plus
a list of the edges that cannot be deduced from the BFS tree. They achieve
compression by dividing those lists into chunks and taking advantage of locality
and similarity. The compression scheme works on chunks of l nodes. Parameter l
(called the level) provides a tradeoff between compression performance and time
to retrieve the adjacency list of a node.

Buehrer and Chellapilla (2008) exploited the existence of many groups con-
sisting of sets of pages that share the same outlinks, which defines complete
bipartite subgraphs (bicliques). Their approach is based on reducing the num-
ber of edges by defining virtual nodes that are artificially added in the graph
to connect the two sets in a biclique. They applied this process iteratively on
the graph until the edge reduction gain is no longer significant. Then, they ap-
plied delta codes on the edge reduced graph. However, they did not report times
for extracting neighbors. They called this scheme VNM (Virtual Node Mining).
Anh and Moffat (2010) also exploit similarity and locality of adjacency lists, but
they divide the lists into groups of h consecutive lists. A model for a group is
built as a union of the group lists. They reduced lists by replacing consecutive
sequences in all h lists by a new symbol. The process can be made recursive by
applying it to the n/h representative lists. They finally applied codes such as
ς-codes (Boldi and Vigna, 2004) over all lists. This approach is somehow similar
to that of Buehrer and Chellapilla (2008), but Anh and Moffat (2010) do not
specify how they actually detect similar consecutive lists.

Grabowski and Bieniecki (2011) (see also Grabowski and Bieniecki (2010))
recently provide a very compact and fast technique for Web graphs. Their algo-
rithms are based on blocks consisting of multiple adjacency lists in a way similar
to Anh and Moffat (2010), reducing edge redundancy, but they use a compact
stream of flags to reconstruct the original lists. Their encoding is basically a
reversible merge of all lists. The parameter h sets the number of adjacency lists
stored in blocks. Increasing the value of h improves compression rate at the cost
of access time.

Another approach that can also be seen as decreasing the number of total
edges and adding virtual nodes was proposed by Claude and Navarro (2010).
This approach is based on Re-Pair (Larsson and Moffat, 1999), a grammar-
based compressor. Re-Pair repeatedly finds the most frequent pair of symbols in
a sequence of integers and replaces it with a new symbol.

Most of the Web graph compression schemes (as the ones described above)
support out-neighbor queries, that is, the list of nodes pointed from a given node,
just as an adjacency list. Being able to solve in-neighbor queries (i.e., the list of
nodes pointing to a given node) is interesting for many applications from random
sampling of graphs to various types of mining and structure discovery activities,
as mentioned in Section 1. It is also interesting in order to represent undirected
graphs without having to store each edge twice.

Brisaboa et al. (2009) exploited the sparseness and clustering of the adjacency
matrix to reduce space while providing out/in-neighbor navigation in a natural
symmetric form, using a structure called k2tree. They have recently improved
their results by applying BFS node ordering on the graph before building the
k2tree (Brisaboa et al., 2012). This achieves the best known space/time tradeoffs
supporting out/in-neighbor access for Web graphs. The k2tree scheme represents
the adjacency matrix by a k2-ary tree of height h = ⌈logk n⌉ (where n is the num-
ber of vertices). It divides the adjacency matrix into k2 submatrices of size n2/k2.
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Completely empty subzones are represented just with a 0-bit, whereas nonempty
subzones are marked with a 1-bit and recursively subdivided. The leaf nodes
contain the actual bits of the adjacency matrix, in compressed form. Recently,
Claude and Ladra (2011) improved the compression performance on Web graphs
by combining the k2tree with the Re-Pair-based representation (Claude and
Navarro, 2010). Another representation able to solve out/in-neighbors (Claude
and Navarro, 2010b) was obtained by combining the Re-Pair-based representa-
tion (Claude and Navarro, 2010) with compact sequence representations (Claude
and Navarro, 2008) of the resulting adjacency lists. The times for out- and in-
neighbor queries are not symmetric.

Some recent works on compressing social networks (Chierichetti et al., 2009;
Maserrat and Pei, 2010) have unveiled compression opportunities as well, al-
though in much less degree than on Web graphs. The approach by Chierichetti
et al. (2009) is based on the Webgraph framework (Boldi and Vigna, 2004), us-
ing shingling ordering (based on Jaccard coefficient) (Broder A., 2000; Gibson et
al., 2005) and exploiting link reciprocity. Even though they achieve interesting
compression for social networks, their approach requires decompressing the graph
in order to retrieve the out-neighbors. Maserrat and Pei (2010) achieve compres-
sion by defining an Eulerian data structure using multi-position linearization of
directed graphs. This scheme is based on decomposing the graph into small dense
subgraphs and supports out/in-neighbor queries in sublinear time. Claude and
Ladra (2011) improve upon this scheme by combining it with the use of compact
data structures.

2.2. Compact data structures for sequences

We make use of compact data structures based on bitmaps (sequences of bits)
and sequences of symbols. These sequences support operations rank, select and
access. Operation rankB(b, i) on the bitmap B[1, n] counts the number of times
bit b appears in the prefix B[1, i]. Operation selectB(b, i) returns the position of
the i-th occurrence of bit b in B (and n + 1 if there are no i b’s in B). Finally,
operation accessB(i) retrieves the value B[i]. A solution requiring n + o(n)
bits and providing constant time for rank/select/access queries was proposed
by Clark (1996) and good implementations are available (e.g., RG (González
et al., 2005)). Later, Raman et al. (2002) managed to compress the bitmap
while retaining constant query times. The space becomes nH0(B) + o(n) bits,
where H0(B) is the zero-order entropy of B, H0(B) = n0

n log n
n0

+ n1

n log n
n1

≤ 1,

where B has n0 zeros and n1 ones (we use binary logarithms by default). Good
implementations are also available (i.e., RRR (Claude and Navarro, 2008)).

The bitmap representations can be extended to compact data structures for
sequences S[1, n] over an alphabet Σ of size σ. The wavelet tree (WT) (Grossi et
al., 2003) supports rank/select/access queries in O(log σ) time. It uses bitmaps
internally, and its total space is n log σ + o(n) log σ bits if representing those
bitmaps using RG, or nH0(S) + o(n) log σ bits if using RRR, where H0(S) =∑

c∈Σ
nc

n log n
nc

≤ log σ, nc being the number of occurrences of c in S. As our

alphabets will be very large, we use the version “without pointers” (Claude
and Navarro, 2008), which saves an extra space of the form O(σ log n). Another
sequence representation (GMR) (Golynski et al., 2006) uses n log σ + n o(log σ)
bits, and supports rank and access in time O(log log σ), and select in O(1) time.
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3. Dense Subgraphs

In this section we describe the algorithm to discover dense subgraphs such as
bicliques, cliques and generalizations, and study the quality of our algorithm.
This technique is the basis for all the compressed representations that follow.

3.1. Basic notions

We represent a Web graph as a directed graph G = (V,E) where V is a set
of vertices (pages) and E ⊆ V × V is a set of edges (hyperlinks). For an edge
e=(u,v), we call u the source and v the center of e. In social networks, nodes
are individuals (or other types of agents) and edges represent some relationship
between the two nodes. These graphs can be directed or undirected. In case they
are undirected, we make them directed by representing both reciprocal directed
edges. Thus from now on we consider only directed graphs.

We follow the idea of “dense communities” in the Web of Kumar et al. (1999)
and Dourisboure et al. (2007), where a community is defined as a group of pages
related to a common interest. Such Web communities are characterized by dense
directed bipartite subgraphs. In fact, Kumar et al. (1999) summarize that a
“random large enough and dense bipartite subgraph of the Web almost surely
has a core (a complete bipartite subgraph)”, which they aim to detect. Left sets
of dense subgraphs are called Fans and right sets are called Centers. In this
work, we call the sets Sources (S) and Centers (C) respectively, which is the
same naming given by Buehrer and Chellapilla (2008). One important difference
of our work from Kumar et al. (1999) and Dourisboure et al. (2007) is that
we do not remove edges before applying the discovery algorithm. In contrast,
Dourisboure et al. (2007) and Kumar et al. (1999) remove all nepotistic links,
that is, links between two pages that belong to the same domain. In addition,
Dourisboure et al. (2007) remove isolated pages, that is, pages with zero out-
neighbors and in-neighbors.

For technical reasons that will be clear next, we will add all the edges (u, u)
to our directed graphs. We indicate in a small bitmap of |V | bits which nodes u
actually had a self-loop, so that later we can remove from the edges output by
our structures only the spurious self-loops.

We also note that the discovery algorithms are applied over Web graphs
with natural node ordering (Boldi et al., 2011), which is basically URL ordering,
because they provide better results than using other node orderings.

We will find patterns of the following kind.

Definition 3.1. A dense subgraph H(S,C) of G = (V,E) is a graph G′(S ∪
C, S × C), where S,C ⊆ V .

Note that Definition 3.1 includes cliques (S = C) and bicliques (S ∩ C = ∅),
but also more general subgraphs. Our goal is to represent the |S| · |C| edges of a
dense subgraph using O(|S| + |C|) space. Two different techniques to do so are
explored in Sections 4 and 5.
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3.2. Discovering dense subgraphs

In this section we describe how we discover dense subgraphs. Even finding a
clique of a certain size is NP-complete, and the existing algorithms require time
exponential on that size (e.g., Algorithm 457 of Bron and Kerbosch (1973)).
Thus, we need to resort to fast heuristics for our huge graphs of interest. Besides,
we want to capture other types of dense subgraphs, not just cliques. We first
use a scalable clustering algorithm (Buehrer and Chellapilla, 2008), which uses
the idea of “shingles” (Gibson et al., 2005). Once the clustering has identified
nodes whose adjacency lists are sufficiently similar, we run a heavier frequent
itemset mining algorithm (Buehrer and Chellapilla, 2008) inside each cluster.
This mining algorithm is the one that finds sets of nodes S that point to all the
elements of another set of nodes C (they can also point to other nodes).

This algorithm was designed to find bicliques: a node u cannot be in S and
C unless (u, u) is an edge. As those edges are rare in Web graphs and social
networks, this algorithm misses the opportunity to detect dense subgraphs and
is restricted to find bicliques.

To make the algorithm sensitive to dense subgraphs, we insert all the edges
{(u, u), u ∈ V } in E, as anticipated. This is sufficient to make the frequent
itemset mining algorithm find the more general dense subgraphs. The spurious
edges added are removed at query time, as explained.

The clustering algorithm represents each adjacency list with P fingerprints
(hash values), generating a matrix of fingerprints of |V | rows and P columns.
Then it traverses the matrix column-wise. At stage i the matrix rows are sorted
lexicographically by their first i column values, and the algorithm groups the
rows with the same fingerprints in columns 1 to i. When the number of rows in
a group falls below a small number, it is converted into a cluster formed by the
nodes corresponding to the rows. Groups that remain after the last column is
processed are also converted into clusters.

On each cluster we apply the frequent itemset mining algorithm, which dis-
covers dense subgraphs from the cluster. This algorithm first computes frequen-
cies of the nodes mentioned in the adjacency lists, and sorts the list by decreasing
frequency of the nodes. Then the nodes are sorted lexicographically according
to their lists. Now each list is inserted into a prefix tree, discarding nodes of
frequency 1. This prefix tree has a structure similar to the tree obtained by the
hierarchical termset clustering defined by Morik et al. (2012). Each node p in the
prefix tree has a label (consisting of the node id), and it represents the sequence
l(p) of labels from the root to the node. Such node p stores also the range of
graph nodes whose list start with l(p).

Note that a tree node p at depth c = |l(p)| representing a range of s graph
nodes identifies a dense subgraph H(S,C), where S are the graph nodes in the
range stored at the tree node, and C are the graph nodes listed in l(p). Thus
|S| = s and |C| = c. We can thus point out all the tree nodes p where s · c is over
the size threshold, and choose them from largest to lowest saving (which must
be recalculated each time we choose the largest).

Figure 1(a) shows a dense subgraph pattern with the traditional represen-
tation and (b) shows the way we represent them using the discovery algorithm
described. The whole algorithm can be summarized in the following steps. Fig-
ure 2 shows an example.

Step 1 Clustering-1 (build hashed matrix representing G). We traverse the graph
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Fig. 1. Dense subgraph representation

specified as set of adjacency lists, adding edges (u, u). Then, we compute a hash
value H associated with each edge of the adjacency list P times, and choose
the P smallest hashes associated to each adjacency list. Therefore, for each
adjacency list, we obtain P hash values. This step requires O(P |E|) time.

Step 2 Clustering-2 (build clusters). We build clusters consisting of groups of
similar hashes, by sorting the hash matrix by columns, and select adjacency
lists associated to clusters based on hashes. This requires O(P |V | log |V |) time.

Step 3 Mining-1 (reorder cluster edges). We compute edge frequencies on each
cluster, sorting them from largest to smallest (discarding edges with frequency
of 1), and reorder them based on that order. This step takes O(|E| log |E|)
time.

Step 4 Mining-2 (discover dense subgraphs and replacing). We compute a prefix
tree for each cluster, with tree nodes labeled with the node id of edges. Dense
subgraphs (G′(S ∪C, S×C)) with higher edge saving (|S|× |C|) are identified
in the tree. The overall step is bounded to O(|E| log |E|) time.

Therefore the overall algorithm time complexity, taking P as a constant, is
bounded by O(|E| log |E|).

In Section 4, the dense subgraphs found H(S,C) will be replaced by a new
virtual node whose in-neighbors are S and whose out-neighbors are C. As the
result is still a graph, the dense subgraph discovery process can be repeated on
the resulting graph. In Section 5, instead, the graph H(S,C) will be extracted
only from the original graph, and represented using a compact data structure.

3.3. Evaluation of the discovery algorithm

First, we evaluate the sensibility of the number of hashes (parameter P ) used in
the first step of our clustering. For doing so, we use a real Web graph (eu-2005, see
Table 7). We measure the impact of P in various metrics that predict compression
effectiveness. Table 1 shows the number of discovered cliques (# Cliques), total
number of edges in those cliques (|Cliques|), number of bicliques (# Bicliques),
total number of edges in cliques and bicliques (Edges), total number of nodes
participating in cliques and bicliques (Nodes), and the ratio between both (Ratio,
which gives the reduction factor using our technique of Section 5). All these
metrics show that using P = 2 is slightly better than using other values. When
increasing P , the algorithm discovers more and smaller cliques and bicliques, but
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Table 1. Compression metrics using different P values with eu-2005

P # Cliques |Cliques| # Bicliques Edges Nodes Ratio

2 33,482 248,964 58,467 17,208,908 2,357,455 7.30
4 34,237 246,022 60,226 17,199,357 2,426,753 7.08
8 34,863 245,848 60,934 17,205,357 2,524,240 6.81

the overall compression in terms of representing more edges with fewer vertices
is better with P = 2.

Second, we evaluate our subgraph discovery algorithm. For doing so, we
use the GTgraph suite of synthetic graph simulators.6 From this suite, we use
the SSCA#2 generator to create random-sized clique graphs (Bader and Mad-
duri, 2005; Chakrabarti et al., 2004). We use the parameter MaxCliqueSize to
set the maximum size of cliques (MC), set the Scale parameter to 16, 17 or
20, so as to define 216, 217 or 220 vertices on the graph, and set the parame-
ter ProbIntercliqueEdges = 0.0 (which tells the generator to create a clique
graph, that is, a graph consisting of isolated cliques). Therefore, with this gen-
erator we can control precisely the actual cliques present in the graph, and their
corresponding sizes. We call those real cliques.

We also use the generator R-MAT of the suite to create a power-law graph
without any cliques. The properties of the synthetic clique graphs and the power-
law graph used are described in Table 2. The first graph, PL, is the power-law
graph, whereas the others are clique graphs (V16,V17,V20). Finally, we define

6 Available at www.cse.psu.edu/~madduri/software/GTgraph
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Table 2. Synthetic clique graphs with different number of nodes (Nodes), edges (Edges),
maximum clique size (MC), and total number of vertices participating in cliques (R). Column
d gives the average number of edges per node, and the last column is the average clique size

Name Nodes Edges d MC R avg size

PL 999,993 9,994,044 9.99 0 0 -
V16 65,536 610,500 9.31 15 6,548 9.5
V16 65,536 1,276,810 19.48 30 3,785 17.09
V16 65,536 2,161,482 32.98 50 2,398 27.21
V16 65,536 4,329,790 66.06 100 1,263 51.83
V17 131,072 1,214,986 9.26 15 13,130 9.48
V17 131,072 2,542,586 19.39 30 7,589 17.05
V17 131,072 4,309,368 32.87 50 4,790 27.23
V17 131,072 8,739,056 66.67 100 2,495 52.95
V20 1,048,576 9,730,142 9.76 15 104,861 9.50
V20 1,048,576 20,293,364 19.60 30 60,822 17.02
V20 1,048,576 34,344,134 32.90 50 38,544 27.07
V20 1,048,576 69,324,658 66.18 100 20,102 52.10

Table 3. Synthetic merged power-law and clique graphs

Name Nodes Edges MC d

PL-V16 999,993 10,604,408 15 10.6
PL-V16 999,993 11,270,660 30 11.27
PL-V16 999,993 12,155,249 50 12.15
PL-V16 999,993 14,323,320 100 14.32
PL-V17 999,993 11,208,968 15 11.20
PL-V17 999,993 12,536,277 30 12.53
PL-V17 999,993 14,303,175 50 14.30
PL-V17 999,993 18,732,584 100 18.73
PL-V20 1,048,576 19,724,071 15 18.81
PL-V20 1,048,576 30,287,168 30 28.88
PL-V20 1,048,576 44,337,825 50 42.28
PL-V20 1,048,576 79,317,960 100 75.64

new graphs (PL-V16, PL-V17, and PL-V20), which are the result of merging
graphs PL with V16, PL with V17, and PL with V20. The merging process is
done by computing the union of the edge sets belonging to the PL graph and
one of the clique graphs. That is, both PL and Vxx share the same set of nodes
(called 1 to |V |) and we take the union of the edges in both graphs. We apply
our dense graph discovery algorithm on those merged graphs, whose features are
displayed in Table 3. Figure 3 (left) shows the out-degree histogram for PL, V17
(with MC = 100) and PL-V17 graphs. We evaluate the ability of our discovery
algorithm to extract all the real cliques from these graphs.

For evaluation purposes we also use MCL (Markov Cluster Process), a clus-
tering algorithm proposed by Van Dongen (2000) (and later mathematically
analyzed (Van Dongen, 2008)), which has been mostly applied in bioinformatic
applications (Brohee and Van Helden, 2006), but also in social network analysis
(Mcpherson et al., 2005). MCL simulates a flow, alternating matrix expansion
and matrix inflation, where expansion means taking the power of a matrix using
the matrix product, and inflation means taking the Hadamard power followed
by a diagonal scaling. MCL deals with both labeled and unlabeled graphs, while
the clustering we use deals only with unlabeled graphs. We compare our cluster-
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ing against MCL clustering,7 by changing the first steps (finding clusters) in our
discovery algorithm.

To measure how similar are discovered and real clique sets, we compute the
Average Relative Error (ARE), which is the average of the absolute difference
between true and discovered cliques:

ARE =
1

|R|

∑

i∈R

|ri − r̂i|

ri
, (1)

where ri and r̂i are the real and discovered clique sizes, and |R| is the number
of real cliques. We consider a real clique to be “discovered” if we find more than
half of its vertices.

We also evaluate the discovery algorithm based on precision and recall:

precision =

∑
i∈R |RCE ∩DCE|∑

i∈R |DCE|
, (2)

recall =

∑
i∈R |RCE ∩DCE|∑

i∈R |RCE|
, (3)

where RCE is the node set of a real clique and DCE is the node set of the
corresponding discovered clique.

In addition, we compare the number of discovered cliques (|A|) with respect
to real cliques:

recallNumCliques =
|A|

|R|
. (4)

In order to compare the clustering algorithms, we first measure execution
times. We execute the version of the discovery algorithm that uses MCL only
with one iteration with I = 2.0 (default setting for Inflation parameter). We
also execute our clustering, where we use 40 to 100 iterations in order to reach
similar clustering quality (yet our iterations are much faster than that of MCL).
Table 4 shows the number of discovered cliques (|A|), average sizes (avg), and
the average time in milliseconds (tms) to retrieve a clique when using our dense
subgraph algorithm. We also add the corresponding values obtained using MCL
clustering (|A|M, avgM). The MCL execution time (tmsM) considers sequential
time, whereas ptmsM considers parallel execution time with 16 threads. Our
current discovery algorithm implementation is sequential; its parallel version,
which is under construction, should improve execution times. Still, already our
sequential algorithm is an order of magnitude faster than sequential MCL. Our
approach works better than MCL for graphs that have fewer cliques, as in PL-
V16 and PL-V17. In such cases, even our sequential time with multiple iterations
is much faster than one iteration of the the parallel MCL with 16 threads. For
graphs that contain more cliques and small MC values, the time of our sequential
algorithm is comparable to parallel MCL using 16 threads, yet, as the cliques
grow, MCL does not scale well and even its parallel version becomes slower than
ours.

Figure 3 (right) shows that ARE (Eq. (1)) values are very low in our strategy
(less than 0.06, i.e., 6%) and the error grows slightly when the number of cliques

7 Available at http://micans.org/mcl/
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Table 4. Time required per retrieved clique of different sizes

Name MC |A| avg tms |A|M avgM tmsM ptmsM

PL-V16 15 6,501 9.00 236.1 5,810 7.96 4,359.2 1,938.5
PL-V16 30 3,766 16.53 336.4 3,596 15.18 7,877.3 3,129.1
PL-V16 50 2,389 26.58 305.1 2,331 25.40 11,190.4 5,089.2
PL-V16 100 1,261 51.08 590.0 1,242 50.80 19,839.7 9,363.1
PL-V17 15 13,071 9.00 120.5 12,032 8.30 2,048.4 977.9
PL-V17 30 7,565 16.53 129.8 7,321 15.83 3,226.3 1,612.3
PL-V17 50 4,776 26.70 203.1 4,706 26.21 4,886.3 2,394.1
PL-V17 100 2,492 51.85 318.2 2,481 51.89 10,153.5 4,446.1
PL-V20 15 104,771 9.06 103.1 103,437 9.31 580.2 103.6
PL-V20 30 60,773 16.56 150.3 60,614 16.97 614.6 152.4
PL-V20 50 38,524 26.62 155.4 38,473 27.09 639.7 248.2
PL-V20 100 20,095 51.62 178.6 20,097 52.11 1,371.1 505.7
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Fig. 3. Outdegree histograms (left) and Average Relative Error (right) in synthetic graphs

increases in graphs. However, changing our clustering algorithm to MCL, the
average relative error increases when the graph contains smaller or fewer cliques
hidden in the graph. On the other hand, in all cases we have a precision of 1.0,
which means that we only recover existing cliques. Figure 4 (left) shows recall
(Eq. (3)), and again we observe that our discovery algorithm behaves very well
(more than 0.93, i.e., 93%) for different number and size of cliques hidden in
the graphs. In contrast, MCL is very sensitive to the number and size of cliques,
being less effective for fewer or smaller cliques. We see a similar behavior in
Figure 4 (right), where we measure recallNumCliques (Eq. (4)).

To summarize, with our discovery strategy we discover 98%–99% of the
cliques (Figure 4 (right)), and find their correct vertices with average relative er-
rors between 1% and 6% (Figure 3 (right)). The performance is better for larger
cliques. One possible reason is that the clustering algorithm we use tends to find
greater similarity on those adjacency lists that have more vertices in common.

We also evaluate the impact in scalability and compression (described in
Section 5) using MCL over a real undirected social graph (dblp-2011, see Table 7).
We execute MCL with different values for the inflation parameter (I). Table 5
shows the compression (bpe) and sequential execution time (tms) and parallel
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Table 5. Compression (bpe) and time using MCL with different inflation I values for dblp-2011

Metric Inflation (I) Ours
1.2 1.4 2.0 3.0 4.0

bpe 8.76 9.43 10.17 10.44 10.51 8.41
tms 116,093 36,258 11,643 5,736 5,671 5,449

ptms 17,313 5,509 2,072 1,526 1,710

execution with 16 threads (ptms). It also shows that our clustering approach
outperforms MCL, achieving less space than its slowest construction within the
time of its fastest construction.

To confirm the scalability problems of MCL, we also execute it over a larger
graph, namely eu-2005 (which is the smallest Web graph we use, see Table 7).
We use different I values, from I = 1.2 to I = 4.0 (using I = 6.0 takes more than
2 days). We use parallel MCL with 16 threads; sequential MCL was disregarded
since the parallel execution is already several orders of magnitude slower than our
sequential algorithm. Table 6 shows the results, where we also give the achieved
compression in bpe using our compressed structure with compact data structures
(Section 5). Using the compression scheme described in Section 4 is an order
of magnitude faster. This confirms that the clustering we use in our discovery
algorithm is much more scalable than MCL.

The MCL scalability issue has been reported in several works (Mcpherson et
al., 2005; Mishra et al., 2011; Macropol and Singh, 2010; Hasan et al., 2011). In

Table 6. Compression (bpe) and time using MCL with different inflation values I for eu-2005
using

Metric Inflation (I) Ours
1.2 1.4 2.0 3.0 4.0

bpe 3.46 3.13 3.18 3.21 3.25 2.67
tms - - - - - 2,874

ptms 65,359 62,297 59,535 59,285 89,066 -
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fact, Mishra et al. (2011) reports that MCL performs poorly in sparse graphs.
Macropol and Singh (2010) proposed a scalable discovery algorithm for best
clusters (based on a score metric) for labeled graphs. Their clustering algorithm
is similar to ours, but for labeled graphs. They use Local Sensitive Hashing (LSH)
and achieve better performance than MCL. Additionally, the time complexity
of our algorithm is O(E logE), while a straightforward implementation of MCL
is O(V 3) time, as mentioned in the MCL web site FAQ section8. Another issue
with MCL is that it does not guarantee good effectiveness on directed graphs9.

4. Using Virtual Nodes

In this section we describe compact graph representations based on using virtual
nodes to compress the dense subgraphs. Depending on the representation of the
final graph we obtain various structures supporting out-neighbor and out/in-
neighbor navigation.

In a first phase we apply the discovery of dense subgraphs explained in Sec-
tion 3. Then we apply the idea of virtual nodes (Buehrer and Chellapilla, 2008)
over the original graph, to factor out the edges of the dense subgraphs found.
Given a dense subgraph H(S,C), we introduce a new virtual node w in V , and
replace all the edges in S × C by those in (S × {w}) ∪ ({w} × C).

As the result is still a graph, we iterate on the process. On each iteration
we discover dense subgraphs in the current graph, and replace their edges using
virtual nodes. We refer to this approach as DSM (Dense Subgraph Mining).

The outcome of this phase is a graph equivalent to the original one, in the
sense that we must expand paths that go through virtual nodes to find all the
direct neighbors of a node. The new graph has much fewer edges and a small
amount of virtual nodes in addition to the original graph nodes.

On a second phase, we apply different state-of-the-art compression techniques
and node orderings over this graph to achieve compression and fast out- and
out/in-neighbor queries.

This process has three parameters: ES specifies the minimum size |S| · |C| of
the dense subgraphs we want to capture during the discovery, T is the number
of iterations we carry out to discover dense subgraphs, and P is the number of
hashes used in the clustering stage of the dense subgraph discovery algorithm.

As explained, we input the graph in natural ordering to the DSM algorithm.
If we retain this order on the output and give virtual nodes identifiers larger than
those of the original nodes, we can easily distinguish which nodes are virtual and
which are original. If, instead, use a different ordering on the output, such as
BFS, we need an additional bitmap to mark which nodes are virtual.

4.1. Dense subgraph mining effectiveness

In the experiments of this section we use Web graph snapshots available from the
WebGraph project.10 Table 7 gives the main statistics of the Web graphs used.
We define G1(V 1, E1) as the original Web graph and G2(V 2, E2) as the result of

8 http://micans.org/mcl/man/mclfaq.html#howfast
9 http://micans.org/mcl/man/mclfaq.html#goodinput
10 Available at law.dsi.unimi.it
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Table 7. Main statistics of the Web graphs we used in our experiments. The average neighbors
per node are d1 and d2

Dataset |V 1| |E1| d1 |E2| d2

eu-2005 862,664 19,235,140 22.30 18,733,713 21.72
indochina-2004 7,414,866 194,109,311 26.18 191,606,827 25.84
uk-2002 18,520,486 298,113,762 16.10 292,243,663 15.78
arabic-2005 22,744,080 639,999,458 28.14 631,153,669 27.75

Table 8. Main statistics on the DSM reduced graphs

Dataset T |V 3| |E3| d3 |E2|/|E3| |VN | ET (min)

eu-2005
10 1,042,260 3,516,473 3.37 5.32 179,596 3.45
5 1,019,699 3,776,194 3.70 4.96 157,035 2.45

indochina-2004
10 8,079,568 21,313,402 2.63 8.99 664,703 35.0
5 8,030,729 22,186,260 2.76 8.63 615,864 24.3

uk-2002
10 19,842,886 54,391,059 2.74 5.37 1,322,400 65.8
5 19,767,439 56,329,408 2.84 5.18 1,246,953 44.2

arabic-2005
10 26,193,219 74,071,714 2.82 8.52 3,449,139 185.1
5 25,805,521 78,919,645 3.05 7.99 3,061,441 130.3

removing the (u, u) edges from G1 (as explained, we will store a bitmap marking
which of those edges were originally present). Algorithm DSM will operate on
G2 (where it will start by adding (u, u) for every node). We call G3(V 3, E3) the
outcome of the DSM algorithm, where V 3 = V 1∪VN , VN are the virtual nodes
added, and E3 are the resulting edges in G3. We always use P = 2 for DSM.

Table 8 shows the main statistics of G3, using ES = 6 and carrying out T
iterations. The table also shows the number of virtual nodes (|VN |), the resulting
average arity (d3), the size gain estimation based on the edge reduction, given by
|E2|/|E3|, and the total execution time (ET) in minutes. The edge reduction is
significant, from 5X to 9X, whereas the increase in nodes is moderate, 7%–20%.

4.2. Performance evaluation with out-neighbor support

In this section we evaluate the space and time performance when supporting out-
neighbor queries, by applying DSM and then state-of-the-art compression on the
resulting graph. For the second phase we use BV (version 3.0.1 from WebGraph,
which uses LLP ordering (Boldi et al., 2011)) and AD (version 0.2.1 of their
software, 11 giving it the input in natural order (Apostolico and Drovandi, 2009)).
We compare our results with the best alternatives, including BV (Boldi et al.,
2011), AD (Apostolico and Drovandi, 2009), and GB (Grabowski and Bieniecki,
2011). Combining DSM with GB was slightly worse than GB standalone, so we
omit that combination. We also omit other representations (Claude and Navarro,
2010) that have been superseded over time.

Table 9 shows the compression achieved with the combinations. The param-
eters for each of the techniques are tuned to provide the best performance. We
refer to BV as applying BV with parameters m = 100 and w = 7, where m is
the maximum reference chain and w is the window size (those parameter values

11 Available at http://www.dia.uniroma3.it/~drovandi/software.php
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Table 9. Compression performance in bpe, with support for out-neighbor queries. The best
performing one per graph is in bold and the second best in italics

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005

BVm100w7 3.74 1.50 2.38 1.79
AD8 3.64 1.60 2.64 2.26
GB128 1.83 1.09 1.76 1.35

DSM+ESx-T10+BV 3.06 1.48 2.68 2.06
DSM-ESx-T5+AD4 2.44 1.18 2.05 1.56
DSM-ESx-T5+AD8 2.30 1.06 1.87 1.45
DSM-ESx-T10+AD4 2.32 1.14 2.01 1.51
DSM-ESx-T10+AD8 2.20 1.03 1.83 1.40

improve compression, but increase access times a little, as observed in Figure 5
(left)); ADl as using AD with parameter l; and GBh as using GB with param-
eter h. For our representations we add a bitmap of length |V | marking which
nodes have a self-loop (as our technique otherwise loses this information). We
use RRR for compressing the self-loop bitmap. We compute bits per edge (bpe)
as the total amount of bits of the compressed graph plus the self-loop bitmap,
divided by E1.

We refer to DSM-ESx-Ty as using ES = x and iterating DSM for T = y
times. We tuned our combinations using DSM with BVm3w7 (DSM-ESx-Ty+BV)
and DSM with AD8 (DSM-ESx-Ty+AD8). Using DSM with BV, we found that
the best ES values were 30 for eu-2005 and 100 for indochina-2004, uk-2002 and
arabic-2005; while the best T value was 10. On the other hand, the best ES
value when combining DSM with AD were 10 for eu-2005 and arabic-2005; and
15 for indochina-2004 and uk-2002. Those are the x values that correspond to
ESx in the table.

Table 9 shows GB outperforms BV and AD by a wide margin. Among our
representations, the one using T = 10 combined with AD8 gives the best results.
Overall, in most datasets, the best compression ratio for accessing out-neighbors
is achieved by GB128, but our technique is very close for datasets uk-2002 and
arabic-2005, and we slightly outperform it for indochina-2004. Only for the small-
est graph, eu-2005, is GB128 better by far. Nevertheless, as observed in Figure 5
(right), over transposed graphs our technique achieves better compression and
access time than GBh, and the sum favours our techniques when supporting in-
and out-neighbors (i.e., when storing both the direct and reverse graphs).

Figure 5 (left) shows the space/time tradeoffs achieved using BV, AD, and
GB (using parameter value h = 8, 32, 64, 128), compared to using DSM before
applying BV or AD. When combining DSM with BV we used the optimum ES
values mentioned above, and used BV with parameters w = 7, and m = 3, 100,
and 1000. When combining with AD we also use the optimum ES value and
test different values of l for AD in the second phase. We did not use a greater T
because the edge reduction obtained did not compensate the extra virtual nodes
added. We compute the time per edge by measuring the total time, t, needed
to extract the out-neighbors of all vertices in G1 in a random order, and then
dividing t by the total number of recovered edges (i.e., |E1|).

We observe that both BV and AD improve when combined with DSM. In
particular, the combination of DSM with AD dominates BV, AD, and DSM
plus BV. It achieves almost the same space/time performance as GB, which
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Fig. 5. Space/time efficiency with out-neighbor queries
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Fig. 6. Space/time efficiency with out/in-neighbor queries

dominates all the others, and surpasses it in graph in-2004. Only in the smallest
graph, eu-2005, does GB clearly dominate our combination.

Figure 5 (right) shows the same results on the transposed graphs. Note that
the DSM preprocessing is the same for the original and the transposed graphs,
so we preprocess the graph once and then represent the reduced original and
transposed graphs. On the transposed graphs, we observe that the alternative
that combines DSM with BV actually performs worse than plain BV on large
graphs. GB does not perform as well as on the original graphs, but on eu-2005 it is
the best alternative. AD behaves very well on uk-2002, but our best combination
outperforms it over the other datasets. In fact, our best combination is one of
the two best alternatives in all datasets.

Figure 6 shows the space required to store the original plus the transposed
graphs, combined with the time for out-neighbor queries (which is very similar
to that for in-neighbor queries; these are run on the transposed graph). It can
be seen that our new combinations of DSM plus AD dominate most of the
space/time tradeoff, except on eu-2005. However, a data structure specific for
out/in-neighbor queries (k2part (Claude and Ladra, 2011)) offers comparable
(and in some graphs much better) time performance, but we outperform it in
space, considerably on some graphs.
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Table 10. Compression performance when combining with k2trees

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005

k2treeNAT 3.45 1.35 2.77 2.47
k2treeBFS 3.22 1.23 2.04 1.67

DSM-ES10-T5 + k2treeNAT 2.76 1.36 2.40 1.76
DSM-ES10-T10 + k2treeNAT 2.71 1.34 2.40 1.76
DSM-ES15-T5 + k2treeNAT 2.65 1.27 2.28 1.67
DSM-ES15-T10 + k2treeNAT 2.59 1.27 2.27 1.66
DSM-ES100-T5 + k2treeNAT 2.56 1.16 2.13 1.52
DSM-ES100-T10 + k2treeNAT 2.48 1.14 2.08 1.47
DSM-ES10-T5 + k2treeBFS 2.21 0.90 1.56 1.12
DSM-ES10-T10 + k2treeBFS 2.11 0.87 1.53 1.08
DSM-ES15-T5 + k2treeBFS 2.11 0.87 1.54 1.14
DSM-ES15-T10 + k2treeBFS 2.21 0.89 1.57 1.08
DSM-ES100-T5 + k2treeBFS 2.54 0.95 1.67 1.21
DSM-ES100-T10 + k2treeBFS 2.45 0.93 1.64 1.18

Next we will consider a truly bidirectional representation for the reduced
graph, obtaining much less space with higher query time.

4.3. Performance evaluation with out/in-neighbor support

In this section we combine the output of DSM with a compression technique that
supports out/in-neighbor queries: the k2tree (Brisaboa et al., 2009). We use the
best current implementation (Brisaboa et al., 2012). We apply dense subgraph
discovery with parameters ES = 10, 15, 100 and T = 5, 10. In all cases process
DSM is run over the graph in natural order. We denote k2treeBFS the variant
that switches to BFS order on G3 when applying the k2tree representation, and
k2treeNAT the variant that retains natural order.

Table 10 shows the compression achieved. We observe that the compression
ratio is markedly better when using BFS ordering. In particular the setting
ES = 10, T = 10 and k2treeBFS is always the best. The space is also much
better than that achieved by representing the original plus transposed graphs in
Section 4.2.

Figure 7 shows the space/time tradeoff when solving out-neighbor queries (in-
neighbor times are very similar). We include k2treeNAT (Brisaboa et al., 2009),
k2treeBFS (Brisaboa et al., 2012), k2part (Claude and Ladra, 2011), and disre-
gard other structures that have been superseded by the last k2tree improvements
(Claude and Navarro, 2010b). We also include in the plots one choice DSM-ESx-
Ty+AD from Section 4.2, which represents the direct and transposed graphs
using DSM and T = 10 combined with AD using various values of l.

All those structures are clearly superseded in space by our new combinations
of DSM and k2treeBFS or k2treeNAT. Again, the combination with BFS gives
much better results, and using different ES values yields various space/time
tradeoffs. On the other hand, these smaller representations reaching 0.9–1.6 bpe
on the larger graphs are also significantly slower, requiring 5–20 µsec per retrieved
neighbor.
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Fig. 7. Space/time efficiency with out/in-neighbor queries

4.4. Scalability

Even if we aim at fitting the final compressed graph in main memory, the original
graph G2 may be much larger and prevent a direct in-memory application of the
first phase of the algorithm, DSM. We consider this problem in this section.

A simple approach to this problem is to maintain G(V,E) = G2(V 2, E2)
on disk and use the main memory to keep the matrix of hash values of size
P × |V | described in Step 1 (recall Section 3.2), taking advantage of the fact
that |V | ≪ |E|. Given that each row of the P × |V | matrix (formed by P hashes
associated with an adjacency list) can be computed independently of each other,
this step requires only one traversal over the graph. This step is also suitable for
data streaming or for computing each group of rows in parallel.

Step 2 runs on main memory for storing and sorting the matrix by columns.
Once the matrix has been sorted we proceed to create the actual clusters in
Step 3, where we need to access the actual graph stored on disk. Thus, after
Step 2 we obtain the set of node ids for each cluster. With this information we
can load from disk only the blocks we need for a set of clusters. In this part
it is important that, thanks to the locality of reference found on Web graphs,
there is a high probability that clusters are formed by nearby adjacency lists
that reside on the same or a few disk blocks. We refer to this number of disk
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Table 11. Compression of graph eu-2005 divided in different number of parts

NP max(|V 2|+ |E2|) k |V 3|+ |E3| |E2|/|E3| |VN | bpe

1 19,514,936 105,653 4,620,439 5.32 179,596 2.20
5 5,057,710 50,971 4,687,354 5.10 155,944 2.25
10 3,561,390 32,290 4,709,537 5.07 154,821 2.28
20 2,674,977 19,308 4,783,414 4.96 148,615 2.29

blocks as k. Steps 3 and 4 require to keep blocks where current clusters reside in
order to find dense subgraphs and replace adjacency lists with virtual nodes and
their definitions. Since replacing with virtual nodes reduces edges, the graph is
smaller at the end of each iteration. After the replacements are done, disk blocks
are written back to disk. Thus, considering T iterations and k disk blocks for
maintaining adjacency lists, the worst-case I/O cost of the complete algorithm
is O(T ((|E|+ |V |)/B + k)), where B is the disk block size. The algorithm needs
only a few iterations in practice (at most T = 10) and k is usually rather small,
which makes the algorithm almost I/O optimal in practice.

However, since Web graphs expose locality of reference, we can also divide
the graph into multiple parts and process each part independently, at the cost
of losing some inter-part dense subgraphs. Doing so, we can reduce the memory
and processing time according to the needs of each part. Processing each part
independently is also attractive for parallel and distributed processing.

This is done in three stages. First, we apply DSM (in main memory or on
disk) over each part (parts can be just node ranges in natural order). Second, we
remap virtual node identifiers so that they are globally unique. Third, we merge
all the reduced graphs and apply AD reordering and encoding.

We evaluated the partitioning scheme to measure the impact of locality of
reference on how well compression and disk block requirements behave. In this
case, we took the smallest Web graph, eu-2005, and evaluated compression using
different numbers of parts. We separate the nodes dividing the node identifiers
by the number of parts, NP . We first apply DSM-ES15-T10 (with ES = 15
and T = 10) on all parts, then remap the nodes, and finally merge and apply
AD8. Table 11 shows the number of disk blocks k (for a block size of 4KB)
required for sets of 1000 clusters. The value of k displayed in Table 11 considers
the first iteration and all parts. It shows that, when we use 20 parts, we can still
obtain good results on reducing edges, disk block requirements, and compression
performance measured in bpe. Since our last stage, using AD, is applied over the
merged edge-reduced graph, the memory requirement depends basically on the
edge compression gain (|E2|/|E3|). We also show the space requirement for the
input graph as max(|V 2| + |E2|) on a part and the number of nodes and edges
required to store G3 (|V 3|+ |E3|).

We also experimented with a larger dataset, uk-2005-0512, which has 77,741,046
nodes and 2,965,197,340 edges. We divide the graph into 10 parts. This yields
parts with a minimum of about 217 and a maximum of about 410 million edges.
We achieve 1.65 bpe and a neighbor retrieval time of about 0.54 µsec. These
results show that using, say, DSM −ES15− T10 plus AD8, provides a scalable
approach for large Web graphs. In contrast, using AD8 standalone we obtain
2.34 bpe. Using BV standalone we achieve 2.12 bpe at maximum compression,

12 Available at http://law.dsi.unimi.it/webdata/uk-2006-05
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where queries are not supported. Using GB with h = 64 we achieve 1.75 bpe
and a neighbor retrieval time of 0.36 µsec, whereas using h = 128 the bpe is 1.59
and query time is 0.65 µsec. Therefore, the main conclusions we had reached,
that our new scheme and GB provide similar performance on Web graphs and
dominate all the other approaches, seem to be robust and remain valid on much
larger graphs.

The conclusions obtained on bidirectional representations also remain valid,
that is, our representations supporting out/in-neighbor queries are much smaller
yet slower. Combining the results of DSM with 10 parts with k2treeBFS on
graph uk-2006-05 yields 1.29 bpe and a neighbor retrieval time of 12.4 µsec. The
standalone k2treeBFS obtains 1.78 bpe with a retrieval time of 4.12 µsec.

5. Compact Data Structure for Dense Subgraphs

In this section we present a new compressed graph representation based on dense
subgraphs that supports out/in-neighbor as well as various mining queries. We
extract dense subgraphs essentially as in Section 3 and represent them using
compact data structures based on bitmaps and symbol sequences (described in
Section 2.2). Recalling Definition 3.1, our goal will be to represent the |S| · |C|
edges of a dense subgraphH(S,C) in space proportional to |S|+|C|−|S∩C|. Thus
the bigger the dense subgraphs we detect, the more space we save at representing
their edges. This representation will not use virtual nodes, and its output is not
anymore a graph. As a result, we cannot iterate on the discovery algorithm in
order to find dense subgraphs involving virtual nodes.

5.1. Extracting dense subgraphs

We extract dense subgraphs using the algorithms described in Section 3. We use
three parameters: P , the number of hashes in the clustering stage of the dense
subgraph discovery, a list of ES values, where ES is the minimum |S| · |C| size
of dense subgraphs found, and threshold. Parameters P and ES are the same as
before, yet now we use a decreasing list of ES values. The discovery algorithm
continues extracting subgraphs of a size ESi until the number of subgraphs drops
below threshold on a single iteration; then ES is set to the next value in the list
for the next iteration. Note that, in this case, we do not use the parameter T
(number of iterations), since the number of iterations will depend on the number
of extracted subgraphs on each iteration and the threshold value. The goal of
having the ES list in decreasing order is to avoid that extracting a small dense
subgraph precludes the identification of a larger dense subgraph, which gives
a higher benefit. Note that this was not so critical in Section 4, where we were
allowed to iterate over the dense subgraph discovery process and let virtual nodes
participate in larger dense subgraphs.

5.2. Representing the graph

After we have extracted all the interesting dense subgraphs from G(V,E), we
represent G as the set of dense subgraphs plus a remaining graph.
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Definition 5.1. Let G(V,E) be a directed graph, and let H(Sr, Cr) be edge-
disjoint dense subgraphs of G. Then the corresponding dense subgraph repre-
sentation of G is (H,R), where H = {H(S1, C1), . . . , H(SN , CN )} and R =
G−

⋃
H(Sr, Cr) is the remaining graph.

Figure 8(a) shows the adjacency list representation for the graph presented
in Figure 1, where we have already added the self-loops. We also show a dense
subgraph, and a remaining subgraph. Figure 8(b) shows our compact represen-
tation.

5.3. Compact representation of H

Let H = {H1, . . . , HN} be the dense subgraph collection found in the graph,
based on Definition 5.1. We represent H as a sequence of integers X with a
corresponding bitmap B. Sequence X = X1 : X2 : . . . : XN represents the
sequence of dense subgraphs and bitmap B = B1 : B2 : . . . BN is used to mark
separations in each subgraph. We now describe how a given Xr and Br represent
the dense subgraph Hr = H(Sr, Cr).

We define Xr and Br based on the overlapping between the sets S and C.
Sequence Xr will have three components: L, M , and R, written one after the
other in this order. Component L lists the elements of S−C. Component M lists
the elements of S ∩C. Finally, component R lists the elements of C−S. Bitmap
Br = 10|L|10|M |10|R| gives alignment information to determine the limits of
the components. In this way, we avoid repeating nodes in the intersection, and
have sufficient information to determine all the edges of the dense subgraph.
Figure 8(b) shows this representation for our example, which has just one dense
subgraph. Algorithm 1 describes how X and B are built.

We compress the graph G = H ∪R, using sequence X and bitmap B for H.
For R we use some bidirectional compressed graph representation.

To support our query algorithms,X and B are represented with compact data
structures for sequences that implement rank/select/access operations. We use
WTs (Grossi et al., 2003) for sequence X and compressed bitmap representa-
tion RRR (Raman et al., 2002) for bitmap B. The total space is |X|H0(X) +
o(|X| log σ) + |X|H0(B) bits, where σ ≤ |V | is the number of vertices in sub-
graph H. The |X|H0(X) + o(|X| lg σ) owes to the wavelet tree representation,
whereas |X|H0(B) + o(|X|) owes to the bitmap B. Note that |X| is the sum of
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Algorithm 1: Construction of X and B
Input: Subsets S1 . . . SN and C1 . . . CN

Output: Sequence X and Bitmap B
X ← ε;
B ← ε;
for i← 0 to N do

L← Si − Ci;
M ← Si ∩ Ci;
R← Ci − Si;
X ← X : L : M : R;

B ← B : 10|L|10|M|10|R| ;

end

return X,B;

the number of nodes of the dense subgraphs in H, which can be much less than
the number of edges in the subgraph it represents.

5.4. Neighbor queries

We answer out/in-neighbor queries as described by Algorithms 2 and 3. Their
complexity is O((|output| + 1) log σ), which is away from optimal by a factor
O(log σ). To exemplify the treatment of (u, u) edges, these algorithms always
remove them before delivering the query results (as explained, more complex
management is necessary if the graph actually contains some of those edges).
Note this finds only the edges represented in component H; those in R must be
also extracted, using the out/in-neighbor algorithm provided by the representa-
tion we have chosen for it.

We explain how the out-neighbors algorithm works; the case of in-neighbors
is analogous. Using selectX(u, i) we find all the places where node u is mentioned
in X. This corresponds to some Xr, but we do not now where. Then we analyze
B to determine whether this occurrence of u is inside component L, M , or R.
In cases L and M , we use B again to delimit components M and R, and output
all the nodes of Xr in those components. If u is in component R, instead, there
is nothing to output in the case of out-neighbor queries.

5.5. Supporting mining queries

An interesting advantage of our compressed structure is that it enables the re-
trieval of the actual dense subgraphs found on the graph. For instance, we are
able to recover cliques and bicliques in addition to navigating the graph. Algo-
rithm 4 shows how easy it is to recover all cliques and bicliques stored in the
compressed structure. This information can be useful for mining and analyzing
Web and social graphs. The time complexity is O(|output| · log σ).

Note that we only report, in this simplified algorithm, pure cliques and bi-
cliques. A slight modification would make the algorithm extract the clique S∩C
that is inside dense subgraph H(S,C), or the bicliques (S−C,C) or (S,C −S).

Another interesting query could be computing the density of the dense sub-
graphs stored in H. Let us use a definition of density (Aggarwal and Wang, 2010)
that considers the connections inside a subgraph: A subgraph G′(V ′, E′) is γ-

dense if |E′|
|V ′|(|V ′|−1)/2 ≥ γ. The density of a clique is always 2. The density of
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Algorithm 2: Find out-neighbors
Input: Sequence X, Bitmap B and vertex u
Output: List of out-neighbors of u
out← ε;
occur ← rankX(u, |X|);
for i← 1 to occur do

y ← selectX(u, i);
p← selectB(0, y + 1);
o← p− y { = rankB(1, p) };
m← o mod 3;
if m = 1 then

s← selectB(1, o + 1)− (o + 1) + 1;
e← selectB(1, o + 3)− (o + 3);

end

else if m = 2 then

s← selectB(1, o)− o + 1;
e← selectB(1, o + 2)− (o + 2);

end

else

s← 1;
e← 0;

end

for j ← s to e do

d← accessX(j);
if ( d 6= u ) then

out← out : d;
end

end

end

return out

Algorithm 3: Find in-neighbors
Input: Sequence X, Bitmap B and vertex u
Output: List of in-neighbors of u
in← ε;
occur ← rankX(u, |X|);
for i← 1 to occur do

y ← selectX(u, i);
p← selectB(0, y + 1);
o← p− y { = rankB(1, p) };
m← o mod 3;
if m = 2 then

s← selectB(1, o− 1)− (o− 1) + 1;
e← selectB(1, o + 1)− (o + 1);

end

else if m = 0 then

s← selectB(1, o− 2)− (o− 2) + 1;
e← selectB(1, o)− o;

end

else

s← 1;
e← 0;

end

for j ← s to e do

d← accessX(j);
if ( d 6= u ) then

in← in : d;
end

end

end

return in
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Algorithm 4: Get cliques and bicliques
Input: Sequence X, bitmap B and vertex u
Output: List of allcliques and allbicliques
allcliques← 〈〉;
allbicliques← 〈〉;
n← rankB(1, |B|);
cur ← 1, p1← 0;
while cur < n do

p2← selectB(1, cur + 1);
p3← selectB(1, cur + 2);
p4← selectB(1, cur + 3);
if p2− p1 = 1 ∧ p4− p3 = 1 then

s← p2− (cur + 1) + 1;
e← p3− (cur + 2);
clique← ∅;
for i← s to e do

clique← clique ∪ {accessX(i)};
end

allcliques.add(clique);

end

else if p3− p2 = 1 then

s← p1− cur + 1;
m← p2− (cur + 1);
e← p4− (cur + 3);
biclique.S ← ∅, biclique.C ← ∅;
for i← s to m do

biclique.S ← biclique.S ∪ {accessX(i)};
end

for i← m + 1 to e do

biclique.C ← biclique.C ∪ {accessX(i)};
end

allbicliques.add(biclique);

end

else

other type of dense subgraph ;
end

cur ← cur + 3, p1← p4;

end

return allcliques, allbicliques

a biclique (S,C) is 2·|S|·|C|
(|S|+|C|)(|S|+|C|−1) . Algorithm 5 computes the density of all

dense subgraphs and reports all dense subgraphs with a density over a given γ.

Some of other possible mining queries are the following:

– Get the number of cliques where node u participates. We just count the number
of times node u is in the M component of X. The algorithm is similar to, say,
Algorithm 2, yet it just identifies the component where u is and increments a
counter whenever this component is M .

– Get the number of bicliques where node u participates. This is basically the
same as the previous query, yet this time we count when node u is in compo-
nents L or R. If u is in L it is a source and if it is in R it is a center.

– Get the number of subgraphs. We just compute the number of 1s in B and
divide this number by 3. This is because for every dense subgraph in X there
are 3 1s in B, as shown in Figure 8.
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Algorithm 5: Get all dense subgraphs with density at least γ
Input: Sequence X, bitmap B and density γ
Output: List ls of dense subgraphs with density at least γ
ls← 〈〉;
n← rankB(1, |B|);
cur ← 1, p1← 0;
while cur < n do

p2← selectB(1, cur + 1);
p3← selectB(1, cur + 2);
p4← selectB(1, cur + 3);
V ← p4− p1− 3;
E ← (p3− p1− 2) · (p4− p2− 2);
g ← E/(V · (V − 1)/2);
if (g ≥ γ) then

ls.add((cur + 2)/3);
end

cur ← cur + 3, p1← p4;

end

return ls

Table 12. Number nodes and edges of graphs, and performance of subgraph mining algorithms.
On the top we list the Web graphs and at the bottom the social networks

Data Set Nodes Edges |H|/|E| (bicliques) |H|/|E| (dense)

eu-2005 862,664 19,235,140 91.30% 91.86%
indochina-2004 7,414,866 194,109,311 93.29% 94.51%
uk-2002 18,520,486 298,113,762 90.80% 91.41%
arabic-2005 22,744,080 639,999,458 94.16% 94.61%

enron 69,244 276,143 46.28% 48.47%
dblp-2011 986,324 6,707,236 49.88% 65.51%
LiveJournal-SNAP 4,847,571 68,993,773 53.77% 56.37%
LiveJournal-2008 5,363,260 79,023,142 54.17% 56.51%

5.6. Dense subgraph mining effectiveness

We experiment with the same Web graphs of Section 4.1, plus various social
networks that are also available in the WebGraph site. In addition, we use the
LiveJournal directed graph, available from the Stanford Network Analysis Pack-
age (SNAP) project13 (LiveJournal-SNAP). Table 12 lists their main statistics.

We used our dense subgraph discovery algorithm with parameters ES =
500, 100, 50, 30, 15, 6, discovering larger to smaller dense subgraphs. We used
threshold = 10 for eu-2005, enron and dblp-2011; threshold = 100 for indochina-
2004, uk-2002, LiveJournal-2008 and LiveJournal-SNAP and threshold = 500 for
arabic-2005.

Table 12 also gives some performance figures on our dense subgraph mining
algorithm. On Web graphs (where we give the input to the mining algorithm in
natural order), 91%–95% of the edges are captured in dense subgraphs, which
would have been only slightly less if we had captured only bicliques, as in Buehrer
and Chellapilla (2008). Finding dense subgraphs, however, captures the struc-
ture of social networks much better than just finding bicliques, improving the
percentage of edges captured from 46%–55% to 48%–65%. Note also that the

13 Available at snap.stanford.edu/data
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Table 13. Fraction and average size of cliques, bicliques, and the rest of dense graphs found

Data set Cliques Bicliques Dense subgraphs
fraction size fraction size fraction size

eu-2005 7.19% 7.44 46.67% 18.67 46.14% 20.73
indochina-2004 6.53% 5.18 34.55% 22.47 58.92% 20.54
uk-2002 3.56% 4.47 42.16% 17.84 54.28% 21.92
arabic-2005 3.76% 4.32 42.09% 23.05 54.15% 22.44

enron 0.07% 3.33 67.20% 13.09 32.73% 20.75
dblp-2011 18.22% 3.95 27.76% 8.37 54.02% 6.91
LiveJournal-SNAP 2.41% 3.47 57.99% 9.64 39.60% 10.53
LiveJournal-2008 2.37% 3.44 59.77% 9.75 37.86% 10.47

fraction of edges in dense subgraphs is much lower on social networks, which an-
ticipates the well-known fact that Web graphs are more compressible than social
networks.

Table 13 complements this information with the fraction of cliques, bicliques,
and other dense subgraphs, with respect to the total number of dense subgraphs
found, as well as their average size. This shows that pure cliques are not very
significant, and that more than half of the times the algorithm is able to extend
a biclique to a more general dense subgraph, thereby improving the space usage.

The next experiments consider the final size of our representation. For the
component H we represent sequence X using WT or GMR, and for bitmap
B we use RG or RRR. These implementations are obtained from the library
libcds14. For WT we used the variant “without pointers”. For the component R
we use either k2tree (Brisaboa et al., 2012) or MPk (Claude and Ladra, 2011),
the improvement over the proposal of Maserrat and Pei (2010). Although we use
the most recent version of the k2tree, we use it with natural node ordering to
maintain consistency between the node names in H and R. An alternative would
have been to use BFS ordering for both, that is, reordering before applying the
dense subgraph mining, but this turned out to be less effective.

Table 14 shows how the compression evolves depending on parameter ES,
on graph dblp-2011. ES values in Tables 14 and 15 represent the last value
we consider in the ES list. For instance, ES = 100, in Table 14, means that
we use the sequence of values ES = 500, 100. As ES decreases, we capture
more dense subgraphs, yet they are of lower quality, thus their space saving
decreases. To illustrate this we show the length |X| =

∑
r |Sr|+ |Cr| − |Sr ∩Cr|,

the number of bytes used to represent X and B (“|H| in bytes”, using WT for
X and RRR for B), and the total edges represented by H (RE =

∑
r |Sr| ·

|Cr|). All these indicators grow as ES decreases. Then we show the size of R in
bytes (using representation MPk, with the best k for R), which decreases with
ES. As explained, what also decreases is RE/|X|, which indicates the average
number of edges represented by each node we write in X. Finally, we write the
overall compression performance achieved in bpe, computed as bpe = (bits(H)+
bits(R)/|E|. It turns out that there is an optimum ES value for each graph,
which we use to maximize compression.

Tables 15 and 16 compare the compression we achieve with the alternatives
we have chosen for Web and social graphs. We show the last ES value used

14 Available at http://libcds.recoded.cl
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Table 14. Evolution of compression as ES decreases, for the dblp-2011 data set

ES
500 100 50 30 15

|X| 6.6K 75.8K 232.6K 456.8K 1.05M
|H| in bytes 47.4K 168.0K 487.9K 950.9K 2.20M
RE 165.8K 636.0K 1.24M 1.92M 3.25M
|R| in bytes 7.05M 6.88M 6.70M 6.50M 6.00M
RE/|X| 25.12 8.38 5.33 4.20 3.09
bpe 8.47 8.41 8.58 8.89 9.79

Table 15. Compression performance for Web graphs, compared to other techniques. DSM
refers to DSM-ES10-T10+k2treeBFS

G = H∪R k2treeBFS DSM
Data set ES RE/|X| bpe bpe bpe

eu-2005 6 7.29 2.67 3.22 2.11
indochina-2004 6 14.17 1.49 1.23 0.87
uk-2002 6 8.50 2.52 2.04 1.53
arabic-2005 6 11.56 1.85 1.67 1.08

for discovering dense subgraphs, the ratio RE/|X|, and the compression perfor-
mance in bpe obtained on Web and social graphs. We use WT and RRR where
the sampling parameter is 64 for compressing H. For compressing R, we use
k2treeNAT for Web graphs and MPk for social networks, which gave the best
results (with enron as an exception, where using k2treeNAT on R provides better
compression than MPk, as displayed).

We compare the results with standalone k2treeBFS onWeb graphs, k2treeNAT
on enron, and MPk on the other social networks.

Our technique does not obtain space gains on Web graphs compared to
k2treesBFS. Moreover, the variant DSM-ES10-T10+k2treeBFS of Section 4.3,
also included in the table, is even better.

On social networks, the gains of our new technique are more modest with
respect to MPk. However, we show next that our structure is faster too. Moreover,
there are no other competing techniques as on Web graphs. Our development
of Section 4.3 does not work at all (it reduces less than 1.5% of edges, while
increasing nodes when introducing virtual ones). The next best result is obtained
with BV (which is more effective than GB and AD for social networks).

We note that BV is unable to retrieve in-neighbors. To carry out a fair com-

Table 16. Compression performance for social networks, compared to other techniques. BV
refers to BV adapted to support out/in-neighbor queries

G = H∪R MPk k2treeNAT BV
Data set ES RE/|X| bpe bpe bpe bpe

enron (with k2treeNAT) 6 2.06 10.07 17.02 10.31 18.30
enron 6 2.06 15.42 17.02 10.31 18.30
dblp-2011 100 8.38 8.41 8.48 9.83 10.13
LiveJournal-SNAP 500 12.66 13.02 13.25 17.35 23.16
LiveJournal-2008 100 4.88 13.04 13.35 13.63 17.84
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Fig. 9. Space/time efficiency with out-neighbor queries on social networks, for various ES
values (only component H is considered)

parison, we follow BV authors suggestion (Boldi et al., 2011) for supporting
out-in/neighbor queries. They suggest to compute the set Esym of all symmetric
edges, that is, those for which both (u, v) and (v, u) exist. Then they consider the
graph Gsym = (V,Esym) and Gd(V,E−Esym), so that storing Gsym, Gd, and the
transpose of Gd enables both types of queries. The space we report in Table 16
for BV considers this arrangement and, as anticipated, is not competitive.

5.7. Space/time performance

Figure 9 shows the space/time tradeoffs achieved on dblp-2011 and LiveJournal-
SNAP graphs considering only the H component. We test different ES parame-
ters. We use WT and GMR for the structures that represent X and RRR for B.
These are indicated in the plots as WT-r and GMR-r. The sampling parameter
for RRR is 16, 32, and 64, which yields a line for each combination. Along this
section we measure out-neighbor query times, as in-neighbor queries perform
almost identically. We observe that using WT provides more compression than
GMR, but it requires more time.

The plots show how using increasing ES improves space and time simulta-
neously, until reaching the optimum space. Using a larger ES value also implies
fewer iterations on the dense subgraph extraction algorithm, which dominates
construction time (this is currently 0.1–0.2 msec per extracted edge, but con-
struction is not yet optimized).

We now consider our technique on social networks, representing H and R,
the latter using either k2tree or MPk, and compare it considering space and time
with the state of the art. This includes standalone k2trees with BFS and natural
order, MPk with the best k and, as a control value, BV with out/in-neighbor
support. Now our time is the sum of the time spent on H and on R. We represent
H using our best alternatives based on DSM-ESx-WT-r and DSM-ESx-GMR-r.

Figure 10 compares the results on social networks. The inner figures show a
closeup of the best alternatives. While, on enron, k2tree with natural order is the
best choice when using little space, on the other networks our combination of
DSM and MPk is the best, slightly superseding standalone MPk in both space
and time.
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Fig. 10. Space/time tradeoffs for social networks

Figures 11 and 12 carry out a similar study on Web graphs. In Figure 11 we
also show that, on these graphs DSM improves significantly in space with respect
to detecting only bicliques (“BI”), while the time is similar. Figure 12 shows that
the structure proposed in this section is dominated in space and time by that
proposed in Section 4. Yet, we remind that the structure we propose in this
section is able to answer various mining queries related to the dense subgraphs
found, easily and using no extra space.

6. Conclusions

This paper studies graph compression schemes based on finding dense subgraphs.
Dense subgraphs generalize the bicliques considered in previous work (Buehrer
and Chellapilla, 2008), and our experiments show that this generalization pays off
in terms of compression performance. We show how previous biclique discovery
algorithms can be adapted to detect dense subgraphs.

We first present a compression scheme based on factoring out the edges of
dense subgraphs using virtual nodes, which turns out to be suitable for Web
graphs. After iteratively reducing the graph via virtual nodes, we list the nodes in
BFS order and using an encoding related to it (Apostolico and Drovandi, 2009).
The resulting space and time performance is very similar to the best current
representation supporting out-neighbor queries (Grabowski and Bieniecki, 2011).
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Fig. 11. Space/time efficiency with out-neighbor queries on Web graphs, for various sequence
representations (only component H is considered)

When supporting both out- and in-neighbor queries, instead, our technique gen-
erally offers the best time when using little space. In case graphs do not fit in
main memory, we propose a disk-friendly approach that exploits locality of refer-
ence and data partitioning to build the compressed structure keeping almost the
same compression performance. Dividing the data is also attractive for parallel
and distributed processing.

If, instead, we combine the result of dense subgraph mining with a bidirec-
tional representation, the k2tree (Brisaboa et al., 2009), using BFS node ordering,
the result is the most space-efficient representation of Web graphs that supports
out/in-neighbors in a few microseconds per retrieved value.

We present a second compression scheme also based on dense subgraphs, yet
using compact data structures instead of virtual nodes to represent them. The
result turns out to be more suitable to compress social networks with out/in-
neighbor support, achieving the least space while supporting queries in a few
microseconds. As extracting dense subgraphs is non-trivial, and the dense sub-
graphs expose community substructures in social networks, these dense sub-
graphs may be useful for other graph mining and analysis purposes. A distin-
guishing feature of our representation is that it gives easy access to these dense
subgraphs without any additional space.

Despite the enormous progress made in the last decade on Web graph com-
pression, the amount of activity in this area shows that further compression is
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Fig. 12. Space/time tradeoffs for Web graphs

perfectly possible. The case of social networks is more intriguing, as the tech-
niques that had been successful on Web graphs have much less impact and the
best results are achieved using other properties (Maserrat and Pei, 2010; Boldi
et al., 2011), but still the results are much poorer. Perhaps social networks are
intrinsically less compressible than Web graphs, or perhaps we have not yet
found the right properties that permit compressing them further. We believe
that our extension for finding more general dense subgraphs (not just bicliques)
is an interesting step towards that goal. Another line of development we have
contributed to is that of supporting more complex operations on the compressed
representations, not only direct navigation (out-neighbors) but also bidirectional
navigation and other more complex queries (such as the mining queries we sup-
port on the dense subgraphs found).
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González R, Grabowski S, Mäkinen V, Navarro G (2005). Practical implementation of rank
and select queries. Poster Proc. Volume of 4th Workshop on Efficient and Experimental
Algorithms (WEA), Santorini Island, Greece, May 2005, pp 27–38.

Golynski A, Munro J, Rao S (2006). Rank/select operations on large alphabets: a tool for
text indexing. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), Miami, FL, January 2006, pp 368–373.

Grabowski S, Bieniecki W (2010). Tight and simple Web graph compression. CoRR
abs/1006.0809, 2010.

Grabowski S, Bieniecki W (2011). Merging adjacency lists for efficient Web graph compression.
Advances in Intelligent and Soft Computing, 103(1):385–392.

Grossi R, Gupta A, Vitter J (2003). High-order entropy-compressed text indexes. Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Baltimore,
MD, January 2003, pp 841–850.

Hasan M, Salem S, Zaki M (2011) SimClus: an effective algorithm for clustering with a lower
bound on similarity. Knowledge and Information Systems, 28(3), pp 665–685.

Hernández C, Navarro G (2011). Compression of Web and social graphs supporting neighbor
and community queries. Proceedings of the 6th ACM Workshop on Social Network Mining
and Analysis (SNAKDD), San Diego, CA, August 2011.

Hernández C, Navarro G (2012). Compressed representation of Web and social networks via
dense subgraphs. Proceedings of the 19th International Symposium on String Processing
and Information Retrieval (SPIRE), Cartagena de Indias, Colombia, October 2012, pp 264–
276.

Katarzyna M, Przemyslaw K, Piotr B (2009). User position measures in social networks. Pro-
ceedings of the 4th ACM Workshop on Social Network Mining and Analysis (SNAKDD),
Paris, France, June 2009, pp. 1–9.

Kleinberg J (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632.

Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999). Trawling the Web for emerging
cyber-communities. Computer Networks, 31(11):1481–1493.

Larsson N, Moffat A (1999). Offline dictionary-based compression. Proceedings of the Data
Compression Conference (DCC), Snowbird, Utah, March 1999, pp 296–305.

Lee V, Ruan N, Jin R, Aggarwal C (2010). A survey of algorithms for dense subgraph discovery.
Managing and Mining Graph Data (2010): 303-336.

Macropol K, Singh A (2010). Scalable discovery of best clusters on large graphs. PVLDB
Journal, 3(1):693–702.

Maserrat H, Pei J (2010). Neighbor query friendly compression of social networks. Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD), Washington DC, July 2010, pp 533–542.

Mcpherson J, Ma K, Ogawa M (2005). Discovering parametric clusters in social small-world
graphs. Proceedings of the ACM Symposium on Applied Computing, Santa Fe, New Mex-
ico, USA, March 2005.

Mislove A, Marcon M, Gummadi P, Druschel P, Bhattacharjee B (2007). Measurement and
analysis of online social networks. Proceedings of the Internet Measurement Conference
(IMC), San Diego, CA, October 2007, pp 29–42.

Mishra R, Shukla S, Arora D, Kumar M (2011). An Effective Comparison of Graph Clustering



Compressed Representations for Web and Social Graphs 37

Algorithms via Random Graphs. International Journal of Computer Applications, 22(1),
pp 22–27.

Morik K, Kaspari A, Wurst M (2012) Multi-objective frequent termset clustering. Knowledge
and Information Systems, 30(3), pp 715–738.

Randall K, Stata R, Wiener J, Wickremesinghe R (2002). The link database: fast access to
graphs of the Web. Proceedings of the Data Compression Conference (DCC), Snowbird,
UT, April 2002, pp 122–131.

Raman R, Raman V, Rao S (2002). Succinct indexable dictionaries with applications to en-
coding k-ary trees and multisets. Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), San Francisco, CA, January 2002, pp 233–242.

Saito H, Toyoda M, Kitsuregawa M, Aihara K (2007). A large-scale study of link spam de-
tection by graph algorithms. Proceedings of Adversarial Information Retrieval on the Web
(AIRWeb), Banff, Alberta, Canada, May 2007.

Saito K, Kimura M, Ohara K, Motoda H (2012). Efficient discovery of influential nodes for SIS
models in social networks Knowledge and Information Systems, 30(3), pp 613–635.

Samet H (2006). Foundations of multidimensional and metric data structures. Morgan Kauf-
mann Publishers Inc. 2009.

Suel T, Yuan J (2001). Compressing the graph structure of the Web. Proceedings of the Data
Compression Conference (DCC), Snowbird, UT, March 2001, pp 213–222.

Suri S, Vassilvitskii S (2011). Counting triangles and the curse of the last reducer. Proceedings
of the 20th International Conference on the World Wide Web (WWW), Hyderabad, India,
March 2011, pp 607–614.

Van Dongen, S (2000). Graph clustering by flow simulation. Ph.D. Thesis, University of Utrecht,
The Netherlands, 2000.

Van Dongen, S (2008). Graph clustering via a discrete uncoupling process. SIAM Journal of
Matrix Analysis Applications, 30(1):121–141.

Vitter, J (2001). External memory algorithms and data structures: dealing with massive data.
ACM Computer Surveys, 33(2):209–271.

Author Biographies

insert photo

Cecilia Hernández is currently a PhD. student at the University of
Chile, Santiago, Chile.

insert photo

Gonzalo Navarro is currently full-professor at the University of
Chile. His areas of interest include algorithms and data structures,
text searching, compression, and metric space searching. He is mem-
ber of the Steering Comittee of LATIN and SISAP conferences, and
of the Editorial Board of Information Systems, Information Retrieval,
and ACM Journal of Experimental Algorithmics.

Correspondence and offprint requests to: Cecilia Hernández, Department of Computer Science,

University of Chile, Santiago, Chile. Email: chernand@dcc.uchile.cl


